Samstag, März 25, 2006

中一數學題

某國硬幣共有五款: $1 $2 $4 $8 $16
拿來付 $29 共有多少不同的組合?



問上圖陰影部份面積佔整個三角形的面積幾分之幾?
(那些陰影三角形是無限延伸下去的)

這兩條題目,我也想了很久...

9 Kommentare:

Anonym hat gesagt…

我哋曾幾何時都識計架
好似叫GP定AP嘛~

Siegfried hat gesagt…

中一點會識, 係唔駛用都計到

Anonym hat gesagt…

點計呀?

Anonym hat gesagt…

one combination, there is only one representation in binary number.

Anonym hat gesagt…
Der Kommentar wurde von einem Blog-Administrator entfernt.
Anonym hat gesagt…

...but one only has to look at the ratio of rightmost 2 triangles, i.e. the ratio of the hypotenus
= (4/5)^2=16/25

Siegfried hat gesagt…

sun bin:
for the 1st problem, $1x29 is a combination, $2x14+$1 is another. so the total combination must be greater than 1 ~~

for the 2nd problem, your answer is close. the correct answer should be 16/(16+25)

Anonym hat gesagt…

ohhh yes, i only got the ratio of grey:white.

for # 1, it reduces to tedious counting and tabulation then, no fun. :)
i somehow assumed one needs the constraint of minimum piece or 1 piece each. oh well...

there is a more 'elegant' solution which is not intended for Form 1, e.g.
consider the coefficient of x^29 for SUM[(1+x)^a(1+x^2)^b(1_x^4)^c.....]=1/[(1-x)(1-x^2)...(1-x^16)]

Siegfried hat gesagt…

for the 1st problem, there's a simpler solution.
f(2k+1)=f(2k)
f(2k)=f(2k-2)+f(k)
it's a simple recursion.